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Highly configurable software systems (program families) appear in many application areas and for many reasons. 

They can produce a potentially large variety of related programs (variants) by selecting suitable configuration options 

(features) at compile time. Many of those configurable software systems can input and manipulate uncertain data.  
In this paper, we present an approach that calculates the assertion probabilities of program families with uncertain 

input data. First, we use a combination of forward and backward family-based (lifted) analyses based on abstract inter-
pretation in order to infer necessary preconditions for a given assertion to be satisfied/violated in all variants of a program 
family. We use lifted analyses based on binary decision diagrams (BDDs) and numerical abstract domains (e.g., Polyhe-
dral) that infer numerical invariants in every program location. Second, model counting techniques are exploited to count 
the number of solutions to the discovered necessary preconditions (given in the form of linear constraints) on input stores. 
We use those counts to estimate the probability that the target assertion is satisfied/violated in all variants individually. 
We implement our approach in a prototype tool, and we evaluate it on several interesting C program families.      
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INTRODUCTION 
 

Customization becomes increasingly popular in 
today’s software systems. Many software systems 
adopt Software Product Line (SPL) methodology [1], 
where features (statically configured options) are used 
to control presence and absence of software function-
ality in a program family. Different family members, 
called variants or valid products, are derived by 
switching features on and off, while reuse of the com-
mon code is maximized. In fact, the main benefits from 
using Software Product Lines are: productivity gains, 
shorter time to market, greater market coverage, etc. 
Software Product Lines (program families) are com-
monly seen in development of commercial embedded 
software, such as in cars, phones, avionics, medicine, 
robotics, etc. In this case, variation points are used to 
either support different application scenarios for em-
bedded components, to provide portability across dif-
ferent hardware platforms and configurations, or to 

produce variations of products for different market seg-
ments or different customers. We consider here SPLs 
implemented using #ifdef directives from the C prepro-
cessor [2]. Many of the above configurable software 
systems use and manipulate uncertain data. Uncer-
tainty is a common aspect especially for systems that 
manipulate error-prone data coming from sensors and 
other external environments. In this case, it is essential 
to learn how the presence of uncertainty in the input 
affect the behavior of all valid variants in the family 
individually. 

Probabilistic program analysis [3–5] aims to 

quantify the probability that a given program satisfies a 

required property. It has many potential applications, 

from program understanding and debugging to 

computing program reliability, compiler optimizations 

and quantitative information flow analysis for security. 

In these situations, it is usually more relevant to quantify 

the probability of satisfying/violating a given property 

than to just assess the possibility of such events to occur. 
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In this work, we describe an efficient method for prob-

abilistic static analysis of program families. In particu-

lar, we show how to calculate the assertion probability, 

and so estimate the program reliability of all variants, 

by using static analysis based on abstract interpretation 

and model counting.  

Abstract interpretation [6, 7] is a unifying the-

ory of sound approximation of structures. It repre-

sents a well-established general framework, which 

provides safe and efficient static analyses of real pro-

grams. Still, static analysis of program families is 

harder than static analysis of single programs, be-

cause the number of possible variants can be very 

large (often huge). Therefore, we use so-called fam-

ily-based (lifted) static analysis [8–10] which works 

on the family level, analyzing all variants of the fam-

ily simultaneously at once, without generating any of 

them explicitly. In particular, we consider here a 

lifted analysis based on a binary decision diagram 

(BDD) lifted domain [10], where (Boolean) features 

are organized in decision nodes and leaf nodes con-

tain a particular analysis property. Elements from the 

BDD domain are used to map the values of Boolean 

features (represented in decision nodes) to an analy-

sis property (represented in leaf nodes) for the variant 

specified by the values of features along the path 

leading to the leave. The efficiency of BDDs comes 

from the opportunity to share equal subtrees, in case 

some properties are independent from the value of 

some features. 

The practical success of abstract interpretation 

is mainly enabled by the design of numerical abstract 

domains, which reason on numerical properties of 

program variables. For example, the polyhedral ab-

stract domain [11] infers linear constraints between 

all program variables in the form: 𝛼1𝑥1 + ⋯ +
𝛼𝑘𝑥𝑘 ≥ 𝛽, where 𝛼1, … , 𝛼𝑘 , 𝛽 ∈ ℝ (reals), and 

𝑥1, … , 𝑥𝑘 are program variables. In our case, we use 

the BDD-based lifted analysis domain, in which the 

polyhedral domain is used for the leaf nodes. We de-

sign two types of static lifted analyses of C program 

families: a forward analysis to automatically infer in-

variants in all program locations, and a backward 

analysis to automatically infer necessary precondi-

tions in all program locations. We combine these two 

analyses to automatically generate the necessary pre-

conditions on input variables that lead to the satisfac-

tion/violation of a given assertion in a program fam-

ily. If obtained preconditions are satisfied by some 

concrete values for input variables, then they repre-

sent input values that will allow the given assertion 

to be satisfied/violated. In fact, we run two backward 

analyses: the first one determines necessary precon-

ditions for the given assertion to be satisfied, while 

the second one determines necessary preconditions 

for the assertion to be violated. 

Model counting is the problem of determining 

the number of solutions of a given constraint (for-

mula). The LATTE tool [12] implements state-of-

the-art algorithms for computing volumes, both real 

and integral, of convex polytopes as well as integrat-

ing functions over those polytopes. More specifi-

cally, we use the LATTE tool and model counting 

techniques to estimate algorithmically the exact num-

ber of points of a bounded (possibly very large) dis-

crete domain that satisfy given linear constraints.  

In this work, we describe a method which uses 

abstract interpretation-based lifted static analysis and 

model counting to perform a specific type of quantita-

tive analysis of program families, which is the calcu-

lation of assertion probabilities. Calculating the prob-

ability of a given target assertion involves counting the 

number of solutions to necessary preconditions that 

ensure satisfaction/violation of the given assertion for 

any variant by using model counting, and dividing it 

by the total space of values of the inputs. We assume 

that the input values are all uniformly distributed 

within their finite discrete domain. As the set of ob-

tained necessary preconditions represents an over-ap-

proximation of the set of exact input values which 

guarantee that all executions starting from them lead 

to satisfaction/violation of the given assertion, we cal-

culate upper and lower bounds of exact probabilities 

that a given assertion is satisfied or violated. The re-

ported uncertainty is due to the approximation inherent 

in abstract interpretation, which is introduced in order 

to obtain a scalable and fully automatic analysis. 

We have developed a prototype probabilistic 

lifted analyzer which uses the BDDAPRON library 

[13] to implement the BDD lifted domain and the 

LATTE tool [11] to implement model counting algo-

rithms. BDDAPRON uses the polyhedral numerical 

domain [11] from the APRON library [14] for the leaf 

nodes. APRON provides a common high-level API 

to the most common numerical property domains, 

such as intervals, octagons, and polyhedral. We have 

implemented a combination of forward and backward 

lifted analyses of #ifdef-enriched C programs for the 

automatic inference of invariants and necessary pre-

conditions in all program locations. In this way, we 

can use the probabilistic lifted analyzer to calculate 

assertion probabilities of C program families, which 

represent majority of industrial embedded code. We 

restrict our attention on program families that have 

finite input domains and on polyhedral numerical el-

ements expressed as linear integer arithmetic (LIA) 

constraints over variables whose values are uniformly 

distributed over their assigned interval domains. 

The following contributions are made in this 

work: 
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 We employ the lifted analysis based on BDDs in-

troduced in [10] and model counting [12] to cal-

culate assertion probabilities in all variants of a 

program family.  

 We provide step-by-step example-driven demon-

stration of how our approach works.  

 We implement our approach using the polyhedral 

numerical domain from the BDDAPRON library 

[13] and the LATTE model counting tool [12].   

 We evaluate our approach for calculating asser-

tion probabilities on a several interesting #ifdef-
enriched C programs.  

 

MOTIVATING EXAMPLE 
 

To better illustrate the issues we are addressing 

in this work, we now present a motivating example 

based on the following program family P: 

 
void main() { 
1: int j := [0,9];  
linput: int i := 0;   
3: while (i<100) { 
4:  i := i+1; 
5:  #ifdef (A) j := j+1; #endif 
6:  #ifdef (B) j := j+1; #endif  
7: } 
lfinal: assert(j<=105); } 

The set of Boolean features in the above pro-

gram family P is 𝔽 = {𝐴, 𝐵} and the set of configura-

tions is 𝕂 = {𝐴 ∧ 𝐵, 𝐴 ∧ ¬𝐵, ¬𝐴 ∧ 𝐵, ¬𝐴 ∧ ¬𝐵}. 

The family P contains two #ifdef directives, which 

increase the variable j by 1, depending on which fea-

tures from 𝔽 are enabled. For each configuration 

from 𝕂 a different variant (single program) can be 

generated by appropriately resolving #ifdef-s. For 

example, the variant corresponding to the configura-

tion 𝐴 ∧ 𝐵 will have both features A and B enabled 

(set to true), so that both assignments j := j+1 in pro-

gram locations 5 and 6 will be included in this vari-

ant. On the other hand, the variant for configuration 

¬𝐴 ∧ ¬𝐵 will have both features A and B disabled 

(set to false), so the above assignments in program 

locations 5 and 6 will not be included in it. There are 
|𝕂| = 4 variants in total.  

We assume that the initial value of variable j 
ranges over the integer domain [0, 9], and the chosen 

initial random value is independently and uniformly 

distributed across this range. We perform two lifted 

analyses: a forward invariant and a backward neces-

sary condition, using the BDD lifted domain and the 

polyhedral numerical domain for the leaf nodes. The 

forward invariant lifted analysis will find that at the 

location lfinal the following invariants hold (see also 

the result in Fig. 1a): the invariant (200 ≤ j ≤ 209) for 

the variant 𝐴 ∧ 𝐵, the invariant (100 ≤ j ≤ 109) for 

variants 𝐴 ∧ ¬𝐵 and ¬𝐴 ∧ 𝐵, and the invariant (0 ≤ j 

≤ 9) for the variant ¬𝐴 ∧ ¬𝐵. Therefore, the target 

assertion (j ≤ 105) is always violated for the variant 

𝐴 ∧ 𝐵 and it is always satisfied for the variant ¬𝐴 ∧
¬𝐵. However, for  variants 𝐴 ∧ ¬𝐵 and ¬𝐴 ∧ 𝐵, the 

assertion can be both satisfied and violated. In those 

cases, we perform a backward necessary condition 

lifted analysis for assertion satisfaction/violation, 

which computes the preconditions on input states 

such that all executions starting from those states will 

satisfy/violate the given assertion. The backward 

necessary condition analysis for  variants 𝐴 ∧ ¬𝐵 and 

¬𝐴 ∧ 𝐵 will infer the precondition (0 ≤ j ≤ 5) at loca-

tion linput for the assertion to be satisfied, while the 

precondition (6 ≤ j ≤ 9) at location linput will be in-

ferred for the assertion to be violated (see the results 

in Fig. 1b and 1c). The size of the input domain is 10, 

since j belongs to [0, 9]. By calling the LATTE tool 

to count the number of solutions to the above precon-

ditions, we can calculate that the probability for the 

assertion to be satisfied (success probability) is less 

or equal to: 0=0% for the variant 𝐴 ∧ 𝐵, 6/10=60% 

for variants 𝐴 ∧ ¬𝐵 and ¬𝐴 ∧ 𝐵, and 1=100% for the 

variant ¬𝐴 ∧ ¬𝐵. On the other hand, the probability 

for the assertion to be violated (failure probability) is 

less or equal to: 1=100% for the variant 𝐴 ∧ 𝐵, 

4/10=40% for variants 𝐴 ∧ ¬𝐵 and ¬𝐴 ∧ 𝐵, and 

0=0% for the variant ¬𝐴 ∧ ¬𝐵.        
Fig. 1 shows the analysis results given as BDDs 

obtained using the forward invariant analysis and two 
backward necessary condition analysis for assertion 

satisfaction and violation. Note that the inner nodes of 

BDDs in Fig. 1 are labelled with features from 𝔽, the 

leaves are labelled with the elements from the polyhe-
dral domain, and the edges are labeled with the truth 

value of the decision on the parent node, true or false 

(we use solid edges for true, and dashed edges for 
false). We can see that BDDs offer possibilities for 

sharing and interaction between analysis properties 
corresponding to different variants. Thus, they provide 

symbolic and compact representation of lifted analysis 

elements. For example, the cases when (A is true and 

B is false) and (A is false and B is true) are identical, 
so they share the same leaf nodes in all three BDDs in 

Fig. 1. Notice that, in the worst case, BDDs still need 
|𝕂| different leaf nodes, but experimental evidence 

shows that sharing often occurs in practice. 
 

PROGRAMMING LANGUAGE 
 

Let 𝔽 = {𝐴1, … , 𝐴𝑛} be a finite and totally 

ordered set of Boolean variables representing the 

features available in a program family. The total or-

dering of features is: 𝐴1 < ⋯ < 𝐴𝑛. A specific 
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subset of features, 𝑘 ⊆ 𝔽, known as configuration, 

specifies a variant (valid product) of a program 

family. We assume that only a subset 𝕂 ⊆ 2𝔽 of all 

possible configurations are valid. An alternative 

representation of configurations is based upon 

propositional formulae. Each configuration 𝑘 ∈ 𝕂 

can be represented by a formula: 𝑘(𝐴1) ∧ … ∧
𝑘(𝐴𝑛), where 𝑘(𝐴𝑖) = 𝐴𝑖 if 𝐴𝑖 ∈ 𝑘, and 𝑘(𝐴𝑖) =
 ¬𝐴𝑖 if 𝐴𝑖 ∉ 𝑘 for 1 ≤ 𝑖 ≤ 𝑛. We will use both 

representations interchangeably. 

We define feature expressions, denoted 

FeatExp(𝔽), as the set of well-formed propositional 

logic formulae over 𝔽 generated by the grammar: 

𝜃 ∷= 𝑡𝑟𝑢𝑒 | 𝐴 ∈ 𝔽 | ¬𝜃 | 𝜃1 ∧ 𝜃2 

We will use 𝜃 ∈ FeatExp(𝔽) to define presence 

conditions in program families. 

We consider a programming language that is 

a subset of C for writing program families, which 

will be used to exemplify our work. The language is 

extended with a compile-time conditional statement 

for encoding multiple variants of a program. The 

new statement ``#ifdef (θ) s'' contains a feature ex-

pression 𝜃 ∈ FeatExp(𝔽)  as a presence condition, 

such that only if θ is satisfied by a configuration 𝑘 ∈
𝕂 then the statement s will be included in the variant  

 

 

 

 

 

 

 

 
 

a) Invariant at point lfinal.        b)   Precondition for assert satisf. at linput.               c) Precondition for assert viol. at linput. 
 

Fig. 1. BDD-based lifted analyses results obtained using a forward invariant analysis and two backward necessary  

condition analyses for assertion satisfaction and violation. We use solid edges for true, and dashed edges for false. 
 

 

corresponding to k. The syntax of the language is: 

s ::=skip| x:=e| x:=[n,n’] |s1; s2|if (e) then s1 else s2                        

| while (e) do s | #ifdef (e) s | assert (e) 

e ::= n | x | e1 ⨁ e2 

where n ranges over integers, [n, n'] ranges over inte-

ger intervals, x ranges over variable names Var, and 

⨁ over binary arithmetic-logic operators.  Non-deter-

ministic interval assignment x := [n, n'] represents an 

input statement which assigns to the input variable x 

an uniformly distributed random integer from the in-

terval [n, n’]. The interval assignment can occur only 

in the input section of the program. The set of all gen-

erated statements s is denoted by Stm, whereas the set 

of all expressions e is denoted by Exp.  We assume 

linput is the location after the input statements (i.e. it 

denotes the end of input section) and lfinal is the loca-

tion at the end of the program, where an assertion as-
sert(ef) is posed. Without loss of generality, a pro-

gram is a sequence of statements followed by a single 

assertion.  

The program families are evaluated in two 

stages. First, a preprocessor takes as input a program 

family and a configuration 𝑘 ∈ 𝕂, and outputs a var-

iant, i.e. a single program without #ifdef-s, corre-

sponding to k. Second, the obtained variant is evalu-

ated using the standard single-program semantics 

[14]. The first stage is specified by the projection 

function 𝒫𝑘, which is an identity for all basic state-

ments of the program family and recursively pre-pro-

cesses all sub-statements of compound statements. 

Hence, 𝒫𝑘(skip) = skip and 𝒫𝑘(s; s') = 𝒫𝑘(s) ; 𝒫𝑘(s’). 

The interesting case is ``#ifdef (θ) s'' statement, 

where the statement s is included in the resulting var-

iant iff k satisfies θ, otherwise the statement s is re-

moved (i.e. replaced with skip). Thus, 

𝒫𝑘(#ifdef (θ) s) = 𝒫𝑘(s), if k satisfies θ, and  

𝒫𝑘(#ifdef (θ) s) = skip, if k does not satisfy θ 

 

SINGLE-PROGRAM STATIC ANALYSES 

 

In this section, we introduce the combination 

of forward and backward single-program analyses for 

inferring necessary preconditions that a given asser-

tion is satisfied/violated. Those preconditions are 

used for computing the probabilities that the given as-

sertion is satisfied (called success probability) or vi-

200≤j≤209 

A 

B B 

100≤j≤109 0≤j≤9 ⊥ 

A 

B B 

0≤j≤5 0≤j≤9 0≤j≤9 

A 

B B 

6≤j≤9 ⊥ 
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olated (called failure probability). For easy presenta-

tion, we focus on single programs in this section, and 

then show how to extend our technique to program 

families in the next section. We introduce basic theo-

retical concepts only as required. 

Recall the running example program family P 

from “Motivating example” section. The variant cor-

responding to the configuration 𝐴 ∧ ¬𝐵 is:    

1: int j := [0,9];  
linput: int i := 0;   
3: while (i<100) { 
4:  i := i+1; 
5:  j := j+1; 
6:  skip;   
7:  } 
lfinal: assert(j<=105);  
We denote it as 𝒫𝐴∧¬𝐵(P).  

 

Concrete semantics.   The “state” of an imperative 

program is a program control location, together with 

the values of all variables in that location. The seman-

tics of a single program is given by defining a state 

transition function 𝑡𝑟𝑎𝑛𝑠, as follows: 

𝑆𝑡𝑎𝑡𝑒 = 𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 × 𝑆𝑡𝑜𝑟𝑒 

𝑆𝑡𝑜𝑟𝑒 = 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 → 𝑉𝑎𝑙𝑢𝑒  
𝑡𝑟𝑎𝑛𝑠 ∶ 𝑆𝑡𝑎𝑡𝑒 → 𝑆𝑡𝑎𝑡𝑒 

We first introduce a collecting (concrete) se-

mantics which associates with each program location 

the set of all memory stores that can ever occur when 

program control reaches that location. We assume the 

program is run on data from a set  𝔼 ∈  2𝑆𝑡𝑜𝑟𝑒 of pos-

sible initial input stores. Let linput be the program’s in-

put location and let l be another program point. The 

set of stores that can be reached at location l are de-

fined:  

𝑐𝑜𝑙𝑙𝑙 = {𝑠 |(𝑙, 𝑠) =  𝑡𝑟𝑎𝑛𝑠𝑛(𝑙𝑖𝑛𝑝𝑢𝑡 , 𝑠0), 𝑠0 ∈ 𝔼, 𝑛 ≥ 0} 

where 𝑡𝑟𝑎𝑛𝑠𝑛 is the n-th iterate of 𝑡𝑟𝑎𝑛𝑠 (i.e. 

𝑡𝑟𝑎𝑛𝑠𝑛 = 𝑡𝑟𝑎𝑛𝑠 °𝑡𝑟𝑎𝑛𝑠𝑛−1). The collecting semantics 

thus associates with each program location the set of 

stores 𝑐𝑜𝑙𝑙𝑙  ∈  2𝑆𝑡𝑜𝑟𝑒. 

For the running example 𝒫𝐴∧¬𝐵(P), there are two var-

iables i and j. Thus, a set of stores has the form:  

{[i ↦ 𝑣1, j ↦ 𝑛1], [i ↦ 𝑣2, j ↦ 𝑛2] … } 

where [i ↦ 𝑣1, j ↦ 𝑛1], [i ↦ 𝑣2, j ↦ 𝑛2] ∈ 𝑆𝑡𝑜𝑟𝑒. 

For notational simplicity, we can identify this set 

with the set:  

{[i ↦ {𝑣1, 𝑣2, … }, j ↦ {𝑛1, 𝑛2, … }]} 

Given an initial input set 𝔼 = {[j ↦ {0, … ,9}]}, the 

set of stores reachable at all program locations are:  

𝑐𝑜𝑙𝑙3 = {[i ↦ {0}, j ↦ {0, … ,9}]} 

𝑐𝑜𝑙𝑙4 = { [i ↦ {0, … ,99}, j ↦ {0, … ,108}]} 

𝑐𝑜𝑙𝑙5 = {[i ↦ {1, … ,100}, j ↦ {0, … ,108}]} 

𝑐𝑜𝑙𝑙6 = {[i ↦ {1, … ,100}, j ↦ {0, … ,109}]} 

𝑐𝑜𝑙𝑙7 = {[i ↦ {1, … ,100}, j ↦ {0, … ,109}]} 

𝑐𝑜𝑙𝑙𝑙𝑓𝑖𝑛𝑎𝑙
={[i ↦ {100}, j ↦ {100, … ,109}]} 

The set 2𝑆𝑡𝑜𝑟𝑒 of all sets of stores forms a lattice with 

set inclusion ⊆ as its partial order, so any two store 

sets A, B have least upper bound 𝐴 ∪ 𝐵 and greatest 

lower bound 𝐴 ∩ 𝐵. The lattice 2𝑆𝑡𝑜𝑟𝑒  is complete, 

meaning that any collection of sets of stores has a 

least upper bound in 2𝑆𝑡𝑜𝑟𝑒, namely its union.    

The above sets of reachable stores 𝑐𝑜𝑙𝑙𝑙 can be ob-

tained as solution to the following forward data-flow 

equations, which have a unique least fixpoint solu-

tion by completeness of 2𝑆𝑡𝑜𝑟𝑒.  

𝑐𝑜𝑙𝑙𝑙𝑖𝑛𝑝𝑢𝑡
= 𝔼  

𝑐𝑜𝑙𝑙3 = 𝑐𝑜𝑙𝑙𝑙𝑖𝑛𝑝𝑢𝑡
∩ {[i ↦ {0}, j ↦ ℕ]}  

𝑐𝑜𝑙𝑙4 = (𝑐𝑜𝑙𝑙3 ∪ 𝑐𝑜𝑙𝑙7) ∩ {i ↦ {0, … ,99}, j ↦ ℕ}  

𝑐𝑜𝑙𝑙𝟓 = {[i ↦ 𝑣 + 1, j ↦ 𝑐𝑜𝑙𝑙4(𝑗)]|𝑣 ∈ 𝑐𝑜𝑙𝑙4(𝑖)} 

𝑐𝑜𝑙𝑙𝟔 = {[i ↦ 𝑐𝑜𝑙𝑙5(𝑖), j ↦ 𝑛 + 1)]|𝑛 ∈ 𝑐𝑜𝑙𝑙5(𝑗)} 

𝑐𝑜𝑙𝑙𝟕 = 𝑐𝑜𝑙𝑙6 

𝑐𝑜𝑙𝑙𝑙𝑓𝑖𝑛𝑎𝑙
= (𝑐𝑜𝑙𝑙3 ∪ 𝑐𝑜𝑙𝑙7) ∩ {[i ↦ {100, … }, j ↦

ℕ]}  

where 𝑐𝑜𝑙𝑙𝑙(j) denotes the set of values assigned to 

the variable j at location l. From the solution of the 

above equations for 𝑐𝑜𝑙𝑙𝑙𝑓𝑖𝑛𝑎𝑙
(𝑗) = {100, … ,109}, we 

can see that the target assertion (j ≤ 105) can be both 

satisfied and violated for the variant 𝐴 ∧ ¬𝐵.  

In order to determine the success and failure 

probabilities for the variant 𝐴 ∧ ¬𝐵, we need to cal-

culate a backward collecting semantics, which given 

a set of final stores finds at each program location the 

set of stores necessary to imply the given set of final 

stores at termination. For the running example pro-

gram, the appropriate backward data-flow equations 

are:  

𝑏_𝑐𝑜𝑙𝑙𝑙𝑖𝑛𝑝𝑢𝑡
= {[j ↦ 𝑏_𝑐𝑜𝑙𝑙3(j)] | 0 ∈ 𝑏_𝑐𝑜𝑙𝑙3(i)}  

𝑏_𝑐𝑜𝑙𝑙3 = (𝑏_𝑐𝑜𝑙𝑙𝑙𝑓𝑖𝑛𝑎𝑙
∩ {[i ↦ {100, … }, j ↦

ℕ] }) ∪ (𝑏_𝑐𝑜𝑙𝑙4 ∩ {[i ↦ {0, … ,99}, j ↦ ℕ] })  

𝑏_𝑐𝑜𝑙𝑙4 = {[i ↦ 𝑣, j ↦ 𝑏_𝑐𝑜𝑙𝑙5(j)]|𝑣 + 1 ∈
𝑏_𝑐𝑜𝑙𝑙5(i)}  

 

𝑏_𝑐𝑜𝑙𝑙5 = {[i ↦ 𝑏_𝑐𝑜𝑙𝑙6(i), j ↦ 𝑛]|𝑛 + 1 ∈
𝑏𝑐𝑜𝑙𝑙6

(j)}  

𝑏_𝑐𝑜𝑙𝑙6 = 𝑏_𝑐𝑜𝑙𝑙7  

𝑏_𝑐𝑜𝑙𝑙7 = (𝑏_𝑐𝑜𝑙𝑙𝑙𝑓𝑖𝑛𝑎𝑙
∩ {[i ↦ {100, … }, j ↦

ℕ] }) ∪ (𝑏_𝑐𝑜𝑙𝑙4 ∩ {[i ↦ {100, … }, j ↦ ℕ]})  

where 𝑏_𝑐𝑜𝑙𝑙𝑙 is the set of all stores at location l that 

cause control to reach point 𝑙𝑓𝑖𝑛𝑎𝑙 with a final store  

𝑏_𝑐𝑜𝑙𝑙𝑙𝑓𝑖𝑛𝑎𝑙
.  Note that, 𝑏_𝑐𝑜𝑙𝑙𝑙𝑓𝑖𝑛𝑎𝑙

is a parameter for 

the above equation system. Now, we find solutions of 

two backward data-flow equations: the first one when 

𝑏_𝑐𝑜𝑙𝑙𝑙𝑓𝑖𝑛𝑎𝑙
= {[𝑖 ↦ ℕ, 𝑗 ↦ {100, … ,105}]} which 
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causes the target assertion to be satisfied; and the sec-

ond one when 𝑏_𝑐𝑜𝑙𝑙𝑙𝑓𝑖𝑛𝑎𝑙
= {[i ↦ ℕ, j ↦

{106, … ,109}]} which causes the target assertion to 

be violated. From the solution of the first backward 

equations, we obtain 𝑏_𝑐𝑜𝑙𝑙𝑙𝑖𝑛𝑝𝑢𝑡
(𝑗) = {0,1,2,3,4, 5}, 

that is 𝔼𝑠𝑎𝑡 = [j ↦ {0,1,2,3,4, 5}].  From the solution 

of the second backward equations, we obtain 

𝑏_𝑐𝑜𝑙𝑙𝑙𝑖𝑛𝑝𝑢𝑡
(𝑗) = {6,7,8,9}, that is 𝔼𝑣𝑖𝑜𝑙 = [j ↦

{6,7,8, 9}]. Therefore, we conclude that the success 

probability is 𝑃𝑟𝑠(𝒫𝐴∧¬𝐵(P)) =
|𝔼𝑠𝑎𝑡|

|𝔼|
=

6

10
= 60% 

and the failure probability is 𝑃𝑟𝑓(𝒫𝐴∧¬𝐵(P)) =
|𝔼𝑣𝑖𝑜𝑙|

|𝔼|
=

4

10
= 40%.  

 

Abstract semantics. The collecting concrete seman-

tics is obviously incomputable, due to the insolvabil-

ity of the halting problem and nearly any other ques-

tion concerning program behavior. Therefore, we 

seek for sound approximations. We demonstrate how 

to derive approximate, but computable analyses, 

which statically determine dynamic properties of pro-

grams. The effect of thus obtained abstract analyses 

is that the price paid for finite computability is loss of 

precision. The abstract analyses will infer necessary 

preconditions on input stores so that all executions 

starting from those input stores lead to satisfaction 

(resp., violation) of the final assertion. In this way, 

we will compute the over-approximations of sets 

𝔼𝑠𝑎𝑡 and 𝔼𝑣𝑖𝑜𝑙, and thus find the lower and upper 

bounds for 𝑃𝑟𝑠and 𝑃𝑟𝑓.  

Recall that the collecting semantics works on 

sets of stores, 2𝑆𝑡𝑜𝑟𝑒. Various approximations can be 

expressed by simpler domains (lattices) 𝐴𝑏𝑠, con-

nected to 2𝑆𝑡𝑜𝑟𝑒 by an abstraction function 

𝛼: 2𝑆𝑡𝑜𝑟𝑒 ⟶ 𝐴𝑏𝑠, and a dual concretization function 

𝛾: 𝐴𝑏𝑠 ⟶ 2𝑆𝑡𝑜𝑟𝑒. Here, Abs represents a lattice of 

approximate descriptions of sets of stores 2𝑆𝑡𝑜𝑟𝑒. The 

pair of functions 𝛼 and 𝛾, which capture information 

loss between two domains (lattices) 2𝑆𝑡𝑜𝑟𝑒 and Abs, 

are required to form a Galois connection [6, 15]. Ab-

stract analysis may thus be thought of as executing 

the program over a lattice of imprecise but computa-

ble abstract store descriptions instead of the precise 

and incomputable collecting semantics lattice.  

There exist various abstract domains, which 

can be used for automatic discovery of program prop-

erties. They differ in expressive power and computa-

tional complexity. The most suitable abstract domain 

for computing necessary preconditions on input 

stores is the polyhedral numerical domain [11]. The 

polyhedral domain is a fully relational numerical 

property domain, which allows manipulating con-

junctions of linear inequalities of the form 𝛼1𝑥1 +

⋯ + 𝛼𝑘𝑥𝑘 ≥ 𝛽, where 𝛼1, … , 𝛼𝑘 , 𝛽 ∈ ℝ (reals), and 

𝑥1, … , 𝑥𝑘 are program variables. Polyhedral analysis 

is computationally expensive but very precise. 

The polyhedral abstract domain ℙ is equipped 

with (over-approximating) sound operators for ab-

straction 𝛼ℙ: 2𝑆𝑡𝑜𝑟𝑒 ⟶ ℙ, concretization 𝛾ℙ: ℙ ⟶
2𝑆𝑡𝑜𝑟𝑒, partial ordering ⊑ℙ, least upper bound (join) 

⊔ℙ, greatest lower bound (meet) ⊓ℙ, the least ele-

ment (bottom) ⊥ℙ, the greatest element (top) ⊺ℙ, as 

well as sound transfer functions for assignments 

𝑎𝑠𝑠𝑖𝑔𝑛ℙ: 𝑆𝑡𝑚 × ℙ → ℙ, tests (which occur in while-

s and if-s) 𝑓𝑖𝑙𝑡𝑒𝑟ℙ: 𝐸𝑥𝑝 × ℙ → ℙ, backward assign-

ments 𝑏_𝑎𝑠𝑠𝑖𝑔𝑛ℙ: 𝑆𝑡𝑚 × ℙ → ℙ, and backward tests 

𝑏_𝑓𝑖𝑙𝑡𝑒𝑟ℙ: 𝐸𝑥𝑝 × ℙ → ℙ. For example, the transfer 

function 𝑓𝑖𝑙𝑡𝑒𝑟ℙ(𝑒, 𝑝) returns an abstract store 𝑝′ 
which is restriction of the abstract store 𝑝, so that it 

satisfies the given test (expression) 𝑒. The domain ℙ 

also contains widening △ℙ and narrowing ⨀ℙ opera-

tors in order to compute an over-approximation of 

least fixpoints.       

We define a system of approximate (abstract) 

forward data-flow equations, which describe the pro-

gram’s behavior on 𝐴𝑏𝑠 = ℙ. We model concrete 

data-flow equations by applying the abstraction func-

tion 𝛼ℙ: 2𝑆𝑡𝑜𝑟𝑒 ⟶ ℙ to the sets involved in equa-

tions. Set inclusion ⊆, union ∪, and intersection ∩ in 

the world of actual, concrete computations are mod-

eled by ⊑ℙ, ⊔ℙ, and ⊓ℙ in the world of abstract com-

putations over ℙ. Thus, we obtain the following sys-

tem of abstract forward data-flow equations: 

𝑖𝑛𝑣𝑙𝑖𝑛𝑝𝑢𝑡
= 𝛼ℙ(𝔼)  

𝑖𝑛𝑣3 = 𝑎𝑠𝑠𝑖𝑔𝑛ℙ(i ≔ 0, 𝑖𝑛𝑣𝑙𝑖𝑛𝑝𝑢𝑡
)  

𝑖𝑛𝑣4 = (𝑖𝑛𝑣3 ⊔ℙ 𝑖𝑛𝑣7) ⊓ℙ 𝑓𝑖𝑙𝑡𝑒𝑟ℙ(i < 100,⊺ℙ) 

𝑖𝑛𝑣𝟓 = 𝑎𝑠𝑠𝑖𝑔𝑛ℙ(i ≔ i + 1, 𝑖𝑛𝑣4) 

𝑖𝑛𝑣𝟔 = 𝑎𝑠𝑠𝑖𝑔𝑛ℙ(j ≔ j + 1, 𝑖𝑛𝑣5) 

𝑖𝑛𝑣𝟕 = 𝑖𝑛𝑣𝟔 

𝑖𝑛𝑣𝑙𝑓𝑖𝑛𝑎𝑙
= (𝑖𝑛𝑣3 ⊔ℙ 𝑖𝑛𝑣7) ⊓ℙ 𝑓𝑖𝑙𝑡𝑒𝑟ℙ(¬(i <

100),⊺ℙ)  

The lattice ℙ is also complete, so the above 

equation system has a unique least fixpoint solution. 

The two forward data-flow equation systems, 𝑐𝑜𝑙𝑙 
and 𝑖𝑛𝑣, are related by: 𝑖𝑛𝑣𝑙 ⊒ℙ 𝛼ℙ(𝑐𝑜𝑙𝑙𝑙)  for any 

program location l. This is the soundness relation 

showing that stores computed by abstract equations 

𝑖𝑛𝑣𝑙 over-approximate the stores computed by con-

crete equations 𝑐𝑜𝑙𝑙𝑙, for any location l. For the run-

ning example 𝒫𝐴∧¬𝐵(P), we obtain the following so-

lution for 𝑖𝑛𝑣𝑙𝑓𝑖𝑛𝑎𝑙
= (100 ≤ j ≤ 109). Hence, we 

conclude that the assertion at lfinal can be satisfied for 

𝑝𝑓𝑖𝑛𝑎𝑙
𝑠𝑎𝑡 = 𝑓𝑖𝑙𝑡𝑒𝑟ℙ (j ≤ 105, 𝑖𝑛𝑣𝑙𝑓𝑖𝑛𝑎𝑙

) = (100 ≤ j ≤

105), and the assertion at lfinal can be violated for 
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𝑝𝑓𝑖𝑛𝑎𝑙
𝑣𝑖𝑜𝑙 = 𝑓𝑖𝑙𝑡𝑒𝑟ℙ (¬(j ≤ 105), 𝑖𝑛𝑣𝑙𝑓𝑖𝑛𝑎𝑙

) = (106 ≤ j ≤

109).  

We now design two abstract backward inter-

preters that propagate backwards the invariants en-

suring that the final assertion is satisfied 𝑝𝑓𝑖𝑛𝑎𝑙
𝑠𝑎𝑡  and 

violated 𝑝𝑓𝑖𝑛𝑎𝑙
𝑣𝑖𝑜𝑙 , respectively. The abstract backward 

interpreters refine the invariants found by 𝑖𝑛𝑣. We 

have the following system of abstract backward data-

flow equations: 

𝑐𝑜𝑛𝑑𝑙𝑖𝑛𝑝𝑢𝑡
= 𝑏_𝑎𝑠𝑠𝑖𝑔𝑛ℙ(i ≔ 0, 𝑐𝑜𝑛𝑑3) 

𝑐𝑜𝑛𝑑3 = (𝑐𝑜𝑛𝑑𝑙𝑓𝑖𝑛𝑎𝑙
⊓ℙ 𝑏_𝑓𝑖𝑙𝑡𝑒𝑟ℙ(¬(i <

100),⊺ℙ)) ⊔ℙ (𝑐𝑜𝑛𝑑4 ⊓ℙ 𝑏_𝑓𝑖𝑙𝑡𝑒𝑟ℙ(i < 100,⊺ℙ))  

𝑐𝑜𝑛𝑑4 = 𝑏_𝑎𝑠𝑠𝑖𝑔𝑛ℙ(i ≔ i + 1, 𝑐𝑜𝑛𝑑5) 

𝑐𝑜𝑛𝑑5 = 𝑏_𝑎𝑠𝑠𝑖𝑔𝑛ℙ(j ≔ j + 1, 𝑐𝑜𝑛𝑑6) 

𝑐𝑜𝑛𝑑6 = 𝑐𝑜𝑛𝑑7 

𝑐𝑜𝑛𝑑7 = (𝑐𝑜𝑛𝑑𝑙𝑓𝑖𝑛𝑎𝑙
⊓ℙ 𝑏_𝑓𝑖𝑙𝑡𝑒𝑟ℙ(¬(i <

100),⊺ℙ)) ⊔ℙ (𝑐𝑜𝑛𝑑4 ⊓ℙ 𝑏_𝑓𝑖𝑙𝑡𝑒𝑟ℙ(i < 100,⊺ℙ))  

The solution of the above system when 𝑐𝑜𝑛𝑑𝑙𝑓𝑖𝑛𝑎𝑙
=

 𝑝𝑓𝑖𝑛𝑎𝑙
𝑠𝑎𝑡  is 𝑐𝑜𝑛𝑑𝑙𝑖𝑛𝑝𝑢𝑡

𝑠𝑎𝑡 = (0 ≤ j ≤ 5), whereas when 

𝑐𝑜𝑛𝑑𝑙𝑓𝑖𝑛𝑎𝑙
=  𝑝𝑓𝑖𝑛𝑎𝑙

𝑣𝑖𝑜𝑙  is 𝑐𝑜𝑛𝑑𝑙𝑖𝑛𝑝𝑢𝑡

𝑣𝑖𝑜𝑙 = (6 ≤ j ≤ 9). 

Next, we call the LATTE tool to count the number of 

solutions from the input domain j ∈ [0,9] to the 

above preconditions 𝑐𝑜𝑛𝑑𝑙𝑖𝑛𝑝𝑢𝑡

𝑠𝑎𝑡 and 𝑐𝑜𝑛𝑑𝑙𝑖𝑛𝑝𝑢𝑡

𝑣𝑖𝑜𝑙 . Fi-

nally, we obtain that the success probability is 

𝑃𝑟𝑠(𝒫𝐴∧¬𝐵(P)) = 60% and 𝑃𝑟𝑓(𝒫𝐴∧¬𝐵(P)) =
40%. Note that, for this running example the abstract 

analyses do not lose any precision, and they compute 

the same results for the success and failure probabil-

ities as the concrete semantics. However, in general 

it is possible to lose some precision by abstract anal-

yses, so the computed results represent lower and up-

per bounds of the exact ones. We now show one ex-

ample, where we obtain approximate results. Con-

sider the following program P’:   

void main() { 
1: int x := [0,9], y:=[0,9];  
linput: int s := x - y;   
3: if (s>=2) y:=y+2; 
lfinal: assert (y>3); 
} 

The forward analysis will infer that the pro-

gram can both satisfy and violate the assertion. The 

backward necessary condition analysis for assertion 

satisfaction will discover the constraint: x + 2y ≥
8 ∧ 0 ≤ x ≤ 9 ∧ 2 ≤ y ≤ 9, thus we find that the 

upper bound probability for assertion satisfaction is 

74%. Moreover, the input stores that do not satisfy 

the above precondition definitely lead to the assertion 

violation. Thus, the lower bound probability for as-

sertion violation is 100%-74%=26%. The backward 

necessary precondition analysis for assertion viola-

tion will discover the constraint: x + 5y ≤ 23 ∧ 0 ≤
x ≤ 9 ∧ 0 ≤ y ≤ 3, thus we find that the upper 

bound probability for assertion violation is 32 %. By 

similar reasoning as above, the lower bound proba-

bility for assertion satisfaction is 68 %. On the other 

hand, we can calculate by hand that the success prob-

ability is exactly 71 %, while the failure probability 

is exactly 29 %. 

 

FAMILY-BASED (LIFTED) STATIC ANALYSES 

 

Lifted analyses are designed by lifting existing 

single-program analyses to work on program fami-

lies, rather than on individual programs. They di-

rectly analyze the code base of program families, 

without preprocessing them by taking the variability 

introduced by #ifdef-s into account.  

 

Concrete semantics. Since, we work with program 

families, we lift all definitions for single-program 

analyses configuration-wise. Thus, we work with 

lifted stores 𝑆𝑡𝑜𝑟𝑒̅̅ ̅̅ ̅̅ ̅ = 𝑆𝑡𝑜𝑟𝑒𝕂 = ∏ 𝑆𝑡𝑜𝑟𝑒𝑘∈𝕂  and 

lifted states 𝑆𝑡𝑎𝑡𝑒̅̅ ̅̅ ̅̅ ̅ =  𝑆𝑡𝑎𝑡𝑒𝕂 = ∏ 𝑆𝑡𝑎𝑡𝑒𝑘∈𝕂 , which 

represent a tuple of |𝕂| copies of 𝑆𝑡𝑜𝑟𝑒 and State, 

one for each valid configuration. Given a lifted store 

𝑠̅  ∈  𝑆𝑡𝑎𝑡𝑒̅̅ ̅̅ ̅̅ ̅, 𝜋𝑘(𝑠̅) selects the k-th component of the 

tuple 𝑠̅. We also work with a lifted transition function 

𝑡𝑟𝑎𝑛𝑠̅̅ ̅̅ ̅̅ ̅̅ : (𝑆𝑡𝑎𝑡𝑒 → 𝑆𝑡𝑎𝑡𝑒)𝕂, which represents a tuple 

of |𝕂| independent simple functions, for which the k-

th component of the function value only depends on 

the k-th component of the argument.   

The collecting lifted semantics works on lifted  

stores and defines the set of lifted stores that can be 

reached at some program location l: 

𝑐𝑜𝑙𝑙̅̅ ̅̅ ̅
𝑙 = {𝑠̅ |(𝑙, 𝑠̅) =  𝑡𝑟𝑎𝑛𝑠̅̅ ̅̅ ̅̅ ̅̅ 𝑛(𝑙𝑖𝑛𝑝𝑢𝑡 , 𝑠0̅), 𝑠0̅ ∈ 𝔼̅, 𝑛 ≥ 0} 

where 𝔼̅ ∈ 2𝑆𝑡𝑜𝑟𝑒̅̅ ̅̅ ̅̅ ̅̅
 is the set of input lifted stores.  

We now show how our approach works for the run-

ning example family P from “Motivating example” 

section. The program family P has two variables i and 

j, and four configurations 𝕂 = {𝐴 ∧ 𝐵, 𝐴 ∧ ¬𝐵, ¬𝐴 ∧
𝐵, ¬𝐴 ∧ ¬𝐵}. The set of input lifted stores is 𝔼̅ =
{([j ↦ {0, … ,9}], [j ↦ {0, … ,9}], [j ↦ {0, … ,9}], [j ↦
{0, … ,9}])} or 𝔼̅ = {∏ [j ↦ {0, … ,9}]𝑘∈𝕂 } for short. 

The first component  of a lifted store, i.e. a tuple, 

([j ↦ 0], [j ↦ 0], [j ↦ 0], [j ↦ 0]) corresponds to con-

fig. 𝐴 ∧ 𝐵, the second to 𝐴 ∧ ¬𝐵, the third to ¬𝐴 ∧
𝐵, and the fourth to ¬𝐴 ∧ ¬𝐵. Forward and backward 

concrete lifted data-flow equations are the same as 

for single programs, except that they now work on 

lifted stores instead of stores. For example, we have: 

𝑐𝑜𝑙𝑙̅̅ ̅̅ ̅
𝑙𝑖𝑛𝑝𝑢𝑡

= 𝔼̅  
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𝑐𝑜𝑙𝑙̅̅ ̅̅ ̅
3 = 𝑐𝑜𝑙𝑙̅̅ ̅̅ ̅

𝑙𝑖𝑛𝑝𝑢𝑡
∩̅ {∏ [𝑖 ↦ {0}, 𝑗 ↦ ℕ]𝑘∈𝕂 } 

𝑏_𝑐𝑜𝑙𝑙̅̅ ̅̅ ̅̅ ̅̅
𝑙𝑖𝑛𝑝𝑢𝑡

= {∏ [j ↦ 𝜋𝑘(𝑏𝑐𝑜𝑙𝑙3
̅̅ ̅̅ ̅̅ ̅(j))] | 0 ∈𝑘∈𝕂

𝜋𝑘(𝑏𝑐𝑜𝑙𝑙3
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (i))} 

where ∩̅ , ∪̅ are lifted versions of intersection and un-

ion that work on tuples. We obtain the following so-

lution for the above forward lifted equations 

𝑐𝑜𝑙𝑙̅̅ ̅̅ ̅̅
𝑓𝑖𝑛𝑎𝑙 ={([𝑖 ↦ {100}, 𝑗 ↦ {200, … ,209}], [𝑖 ↦

{100}, 𝑗 ↦ {100, … ,109}], [𝑖 ↦ {100}, 𝑗 ↦
{100, … ,109}], [𝑖 ↦ {100}, 𝑗 ↦ {0, … ,9}])}. We can see 

that the target assertion (j ≤ 105) is definitely violated 

for 𝐴 ∧ 𝐵, and satisfied for ¬𝐴 ∧ ¬𝐵. Therefore, the 

success probability 𝑃𝑟𝑠 that a variant satisfies the tar-

get assertion is: 𝑃𝑟𝑠(𝜋𝐴∧𝐵(𝑃)) = 0% and 

𝑃𝑟𝑠(𝜋¬𝐴∧¬𝐵(𝑃)) = 100%, whereas the failure 

probability  𝑃𝑟𝑓 that a variant violates a target asser-

tion is: 𝑃𝑟𝑓(𝜋𝐴∧𝐵(𝑃)) = 100% and 

𝑃𝑟𝑓(𝜋¬𝐴∧¬𝐵(𝑃)) = 0%. In order to determine the 

success and failure probabilities for variants 𝐴 ∧ ¬𝐵 

and ¬𝐴 ∧ 𝐵, we run two backward collecting lifted 

semantics: one for assertion satisfaction and one for 

assertion violation. Similarly as in the previous sec-

tion, we can establish that 𝑃𝑟𝑠(𝒫𝐴∧¬𝐵(P)) =

𝑃𝑟𝑠(𝒫¬𝐴∧𝐵(P)) = 60% and 𝑃𝑟𝑓(𝒫𝐴∧¬𝐵(P)) =

𝑃𝑟𝑓(𝒫¬𝐴∧𝐵(P)) = 40%.  

 

Abstract semantics. Polyhedral abstract lifted anal-

yses work on lifted domain ℙ̅ = ℙ𝕂 = ∏ ℙ𝑘∈𝕂 , 

which contains one separate copy for each configura-

tion of 𝕂. All abstract operations that work for ℙ are 

lifted configuration-wise to work for ℙ𝕂. Thus, we 

have lifted versions of partial ordering ⊑̇, join ⊔̇, 

meet ⊓̇, bottom ⊥̇= (⊥ℙ, … , ⊥ℙ), top ⊺̇= (⊺ℙ, … ,⊺ℙ), 

widening △̇, and narrowing ⨀̇. There are also lifted 

versions of transfer functions for assignments 

𝑎𝑠𝑠𝑖𝑔𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅ℙ̅: 𝑆𝑡𝑚 × ℙ̅ → ℙ̅, tests 𝑓𝑖𝑙𝑡𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅
ℙ̅: 𝐸𝑥𝑝 × ℙ̅ →

ℙ̅, backward assignments 𝑏_𝑎𝑠𝑠𝑖𝑔𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
ℙ̅: 𝑆𝑡𝑚 × ℙ̅ → ℙ̅, 

and backward tests 𝑏_𝑓𝑖𝑙𝑡𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
ℙ̅: 𝐸𝑥𝑝 × ℙ̅ → ℙ̅. Fi-

nally, we define  two transfer functions to handle var-

iability introduced by ``#ifdef (θ) s'' statements: 

𝑓_𝑓𝑖𝑙𝑡𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝜃, 𝑝̅) = ∏ {
𝜋𝑘(𝑝̅), if 𝑘 satisfies 𝜃

⊥ℙ, if 𝑘 does not satisfy 𝜃𝑘∈𝕂
 

𝑖𝑓𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ (#𝑖𝑓𝑑𝑒𝑓 (𝜃) 𝑠, 𝑝̅) =
[[𝑠̅]](𝑓_𝑓𝑖𝑙𝑡𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝜃, 𝑝̅)) ⊔̇ 𝑓_𝑓𝑖𝑙𝑡𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(¬𝜃, 𝑝̅)  

where [[𝑠̅]] represents the lifted transfer function for 

the statement s. The function 𝑓_𝑓𝑖𝑙𝑡𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ keeps those 

components k of the input tuple 𝑝̅ that satisfy 𝜃, and 

replaces the other components of 𝑝̅ with ⊥ℙ. The func-

tion 𝑖𝑓𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅  captures the effect of analyzing the state-

ment s in those components k of the input tuple 𝑝̅ that 

satisfy 𝜃, otherwise it is an identity for the other com-

ponents of 𝑝̅. Now, if we perform abstract lifted for-

ward and backward analyses for the running example 

P, we can calculate the exact values for the success 

and failure probabilities for all four variants. For ex-

ample, some abstract forward lifted data-flow equa-

tions are: 

𝑖𝑛𝑣̅̅̅̅̅6 = 𝑖𝑓𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ (#𝑖𝑓 (𝐴) j ≔ j + 1, 𝑖𝑛𝑣5) 

𝑖𝑛𝑣̅̅̅̅̅7 = 𝑖𝑓𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ (#𝑖𝑓 (𝐵) j ≔ j + 1, 𝑖𝑛𝑣6) 

 

Optimization. We can speed up the abstract lifted 

analyses by using shared representation to represent 

sets of configurations with equivalent analysis  
 

 

Table 1. Experimental evaluation of probabilistic lifted analysis based on BDDs vs. probabilistic 

lifted analyses based on tuples . All times are in seconds.  
 

Bench. source |𝔽| LOC 
BDD10 BDD1000 

EXACT 
TIME10 IMPROVE10 TIME1000 IMPROVE1000 

count_up_down*.c loops 4 25 0.018 5 × 0.019 5 × √ 

hhk2008.c loop-lit 5 25 0.037 8.5 × 0.040 9 × √ 

gsv2008.c loop-lit 2 25 0.006 2 × 0.007 2 × √ 

bwd_loop2.c [12] 2 15 0.007 2.1 × 0.007 2 × √ 

example7.c [13] 4 20 0.013 6 × 0.014 6.5 × ≈ 

 

 

information. For this aim, we use binary decision di-

agrams (BDDs) as lifted analysis domains. We ex-

ploit the well-known efficiency of BDDs [16, 17] for 

representing formulae that combine Boolean varia-

bles and analysis properties. The elements of the 

BDD domain are disjunctions of the leaf nodes that 

belong to an existing (single-program) analysis do-

main (e.g. the polyhedral domain), which are sepa-

rated by the values of Boolean features organized in 

the decision nodes. Therefore, we encapsulate the set 

𝕂 into the decision nodes of a BDD where each top-

down path represents one or several configurations 

from 𝕂, and we store in each leaf node the property 

generated from the variants derived by the corre-

sponding configurations.  
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We now formally define the lifted domain of 

BDDs. A binary decision tree (BDT) 𝑡 ∈ 𝕋(𝔽, ℙ) 

over the set of features 𝔽 and the leaf Polyhedral do-

main ℙ is either a leaf <p> with 𝑝 ∈  ℙ and 𝔽 = ⌀, 

or [A:tl,tr] where A is the smallest element of 𝔽 with 

respect to its ordering, tl is the left subtree of t repre-

senting its true branch, and tr is the right subtree of t 

representing its false branch, such that 𝑡𝑙, 𝑡𝑟 ∈
𝕋(𝔽\{𝐴}, ℙ). Recall that 𝔽 = {𝐴1, … , 𝐴𝑛} is a totally 

ordered set with ordering 𝐴1 < ⋯ < 𝐴𝑛. There are 

several reductions that can be applied to BDTs in or-

der to remove the redundancy from their representa-

tion [16, 17]: Removal of duplicate leaves; Removal 

of redundant tests; and Removal of duplicate non-

leaves. If we apply the above reductions to a BDT t, 

we obtain a reduced binary decision diagram (BDD) 

𝑑 ∈ 𝔻(𝔽, ℙ). Thanks to the sharing of information 

enabled by the above reductions, BDDs are quite 

compact representation of tuples from ℙ𝕂. Moreover, 

if the ordering on the features from 𝔽, occurring on 

any path is fixed, then the resulting BDDs have a ca-

nonical form. This means that any property from the 

lifted domain ℙ𝕂 can be represented in a unique way 

by a BDD. 

For example, consider the running example pro-

gram family P. If we use the lifted analysis domain 

ℙ𝕂, we obtain the following solutions of abstract 

lifted analyses. 

𝑖𝑛𝑣̅̅̅̅̅𝑙𝑓𝑖𝑛𝑎𝑙
= {(200 ≤ j ≤ 209, 100 ≤ j ≤ 109,100 ≤ j

≤ 109,0 ≤ j ≤ 9)} 
𝑐𝑜𝑛𝑑̅̅ ̅̅ ̅̅ ̅𝑠𝑎𝑡

𝑙𝑖𝑛𝑝𝑢𝑡
= {(⊥ℙ, 0 ≤ j ≤ 5,0 ≤ j ≤ 5,0 ≤ j ≤ 9)} 

𝑐𝑜𝑛𝑑̅̅ ̅̅ ̅̅ ̅𝑣𝑖𝑜𝑙
𝑙𝑖𝑛𝑝𝑢𝑡

= {(0 ≤ j ≤ 9, 6 ≤ j ≤ 9,6 ≤ j ≤ 9, ⊥ℙ)} 

If we use the BDD-based lifted domain instead, the 

BDDs representing the above locations are given in 

Figure 1. They use three polyhedral properties in-

stead of four as above in case of tuples. Moreover, for 

the input lifted store, the tuple-representation is    
𝑖𝑛𝑣̅̅̅̅̅𝑙𝑖𝑛𝑝𝑢𝑡

= {(0 ≤ j ≤ 9, 0 ≤ j ≤ 9,0 ≤ j ≤ 9,0 ≤ j ≤

9)}, while the BDD representation uses only one pol-

yhedral property, thus maximizing the effects of shar-

ing. This ability for sharing is the key motivation be-

hind the introduction of the BDD-representation.   

 

EXPERIMENTS 

  
In this section, we evaluate our approach for 

computing assertion probabilities of program fami-

lies. We have implemented a prototype lifted static 

analyzer for analyzing programs written in C with 

#ifdef directives. The only basic data types are math-

ematical integers. The tool reports as output the upper 

and lower bounds of probabilities that the target as-

sertion is satisfied or violated in all variants of the 

given family. The prototype tool is written in 

OCAML. All abstract operators and sound transfer 

functions for the polyhedral domain are provided by 

the APRON library [13]. The BDD domain which 

combines Boolean formulae and APRON domains is 

provided by BDDAPRON library [12]. The tool also 

calls the LATTE model counter [11] to determine the 

number of solutions to preconditions discovered by 

abstract lifted analyses. 

All experiments are executed on a 64-bit Intel-

CoreTM i5 CPU, Lubuntu VM, with 8 GB memory. 

The reported times represent the average runtime of 

five independent executions. We have implemented 

two versions of lifted analysis: one based on BDDs 

𝔻(𝔽, ℙ), and one based on tuples ℙ𝕂. Thus, we eval-

uate the performances of our approach when using 

BDDs vs. tuples. In general, the chosen feature order-

ing makes a significant difference to the size of the 

obtained BDD. In this work, the ordering of features 

is syntactically directed, that is the features occurring 

earlier in the syntax of a program are smaller in the 

ordering. It is an interesting topic for future research 

to consider other heuristics for finding good order-

ings [17].  

For our experiment, we use several C programs 

taken from the 8th International Competition on Soft-

ware Verification (SV-COMP 2019) (https://sv-

comp.sosy-lab.org/2019) as well as from the abstract 

interpretation community [17, 18]. We have selected 

some numerical programs with integers that our tool 

can handle. We have manually added input sections 

and variability, and in some of the programs we have 

also defined target assertions. Then, we have ana-

lyzed those programs using our prototype static ana-

lyzer. Table 1 summarizes relevant characteristics for 

each benchmark: the source where it is taken from, 

the number of lines of code (LOC), and the number 

of features.  

Table 1 shows the performance of our technique 

on a selected set of benchmarks. Regarding the pre-

ciseness of the results, we can see in the EXACT col-

umn that our tool gives exact results without any ap-

proximation very often (√ means that the result is ex-

act, ≈ means the result is approximate). Note that the 

exact results are reported when the found lower and 

upper bounds for success and failure probabilities are 

the same. We obtain exact results in most of the cases 

due to the fact that we use the expressive and very 

precise polyhedral abstract domain. For BDD-based 

analysis, there are two columns. In the first column, 

TIME, we report the running time in seconds to ana-

lyze the given program family using BDDs. In the 

second column, IMPROVE, we report how many 

times a BDD-based analysis is faster than the corre-

https://sv-comp.sosy-lab.org/2019
https://sv-comp.sosy-lab.org/2019


22 Aleksandar S. Dimovski 

Contributions, Sec. Nat. Math. Biotech. Sci., MASA, 41 (1), 13–23 (2020) 

 

 

sponding analysis based on tuples. This way, IM-

PROVE represents a measure showing how much 

sharing occurs in BDDs for each benchmark. We can 

see that all BDD-based analyses achieve significant 

speed-ups compared to the tuple-based analyses, 

which range from 5 to 15 times. We have also exper-

imented with different domain sizes n of input varia-

bles (for n=10 and n=1000). Thus, n denotes the num-

ber of possible values per input variable. We observe 

that we obtain similar time performance results for 

n=10 and n=1000, mostly due to the fact that LATTE 

and APRON are largely insensitive to those values in 

terms of time.  

 

RELATED WORK 

 

A formal methodology for deriving tuple-

based lifted analysis from existing single-program 

analysis phrased in the abstract interpretation frame-

work has been introduced in [8]. Subsequently, a 

lifted analysis with improved representation via 

BDDs has been proposed [10]. This paper extends the 

previous works on lifted analysis [8, 10] by applying 

them in performing a specific type of probabilistic 

lifted analysis, that is the calculation of assertion 

probabilities. In particular, we combine the results 

obtained from lifted analyses and the model counting 

techniques to count the number of values for input 

variables that will lead to assertion satisfaction/viola-

tion. Hence, we put in practice the lifted analyses [8, 

10] to solve a practical problem.   

Probabilistic analysis of single programs has 

been used before [3–5]. The work [3] uses symbolic 

execution to calculate path probabilities by counting 

the number of solutions to a path condition. However, 

in presence of loops this approach loses precision, 

since it cannot enumerate all program paths but con-

siders only a finite number of feasible paths. The 

work [4] performs a probabilistic analysis of open 

programs with undefined identifiers (e.g. calls to li-

brary functions) using symbolic game semantics and 

model counting. In the presence of loops and unde-

fined functions, bounded exploration is also used to 

obtain a feasible analysis. In this work, we use ab-

stract interpretation to analyze programs, thus we 

provide a complete treatment of loops. Moreover, 

while all above analysis [3–5] work on single pro-

gram, here we consider program families.   

 

CONCLUSION 

 

In this work, we have presented a combination 

of forward and backward abstract lifted analyses for 

computing reliability of program families. In partic-

ular, we calculate the lower and upper bounds of 

probabilities that a given assertion is satisfied or vio-

lated for all variants of a program family. The BDD-

based lifted domain provides a symbolic and very 

compact representation of lifted properties of pro-

gram families, where the sharing of information is 

maximized. We evaluate the proposed lifted domains 

on several C product lines. We experimentally 

demonstrate the effectiveness of BDD-based lifted 

analyses vs. tuple-based lifted analysis.  

We currently support only uniform distribution 
of input values within their finite discrete domains. In 
future, we plan to model imprecision in the input by 
different non-uniform distributions, such as Bino-
mial, Poisson, etc [20]. Our focus here is on estimat-
ing probability for safety properties. An interesting 
direction for future work would also be to consider 
liveness properties (termination) and expectation 
queries [19]. Another way to speedup lifted analyses 
is via so-called variability abstractions [21, 22], 
which reduce the configuration space to something 
more tractable. Combining variability abstractions 
and BDD-representation would be interesting to con-
sider in future.    
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ЗА ПРЕСМЕТУВАЊЕ НА ВЕРОЈАТНОСТИТЕ НА ТВРДЕЊАТА  

КАЈ ФАМИЛИИ ОД ПРОГРАМИ 

 

Александар С. Димовски 

 

Факултет за информатички науки, Универзитет „Мајка Тереза“, Скопје, Република Македонија 

 
Висококонфигурабилни софтверски системи (фамилии од програми) се појавуваат во многу апликациски 

подрачја и од многу причини. Тие може да продуцираат потенцијално многу слични програми (варијанти) преку 

селектирање соодветни конфигурациски опции (особини) во компајлирачко време. Многу од овие 

конфигурабилни софтверски системи можат да примаат на влез и да манипулираат со несигурни податоци.  

Во овој труд претставуваме еден метод за пресметка на веројатности на тврдења (assertions) во фамилии 

од програми со несигурни влезни податоци. Прво, користиме комбинација од нанапред и наназад фамилијарни 

анализи кои се базирани на апстрактна интерпретација за да се пронајдат неопходните предуслови за дадено 

тврдење да биде задоволено/незадоволено во сите варијанти од една фамилија на програми. Користиме 

фамилијарни анализи базирани на бинарни одлучувачки дијаграми (БДД-ја) и нумерички апстрактни домени (на 

пример, Полихедралниот домен) со чија помош наоѓаме нумерички инваријанти во секоја програмска локација. 

Второ, техниките за броење модели се искористени за да се најде бројот на решенија на пронајдените неопходни 

предуслови (кои се дадени во форма на линеарни ограничувања, т. е. линеарни неравенки). Овие броеви ги 

користиме за да ја процениме веројатноста дека целното тврдење е задоволено/незадоволено. Овој метод го 

имплементиравме во една прототип алатка и направивме нејзина евалуација на неколку интересни фамилии од 

Ц-програми.   

 

Клучни зборови: статичка анализа преку апстрактна интерпретација; броење на модели; софтверски 

продуктни линии (фамилии од програми) 


